HOME > FAQ > Using Fiber Optic Cable

Using Fiber Optic Cable

DATE: 2011-12-23 | SOURCE: HOPE | Click:

A fiber-optic line has significant advantages over its predecessor, including the ability to carry a larger amount of bandwidth over a greater distance at faster speeds. All of these benefits for a lower maintenance cost and with increased resistance to electromagnetic interference from objects like radios and other cables.


There are two primary types of fiber-optic wires. Single mode cords have one glass strand and multi-mode wire has two or more strands along the line.


Multi-mode cable strands are physically larger when compared to single mode strands, which may be up to 10 microns. Fiber-optic wire has layers in its design.


The core is in the center and is the glass strand that carries the light signals. The cladding layer acts as a mirror allowing the light to reflect off it as it travels.


 The coating protects the line and cladding and prevents signals from leaking out of the cord. Additional strands known as strengthening lines surround the coating to make the wire resistant against being crushed or broken.


A thick plastic jacket covers the cable to protect it when being installed and used. Pulses of light are sent from one end of the cable to the other end.



The pulses represent data being transmitted that a decoder at the other end of the wire can decode into information. The strand is made of glass and the light travels through the line, which is coated with reflective material that bounces the light down the strand.



The light is either LED or laser. The cord is used in applications such as digital cable and internet connections as well as computer networks and digital telephone services.



Copper-wire wires use electronic pulses as the signal medium while fiber-optic cords use light pulses in diverse environments. They can be used in telephone systems, cable television, medical technology, and engineering technology.



 The lines are made of strings of pure glass that can be as thin as a strand of human hair. They have a transmitter at one end that processes inputted data and transforms it to a light pulse that subsequently travels down the wire to its destination.



The process is possible because of total internal reflection. This is due to an optical occurrence in which a ray of light reflects back into the medium that contains it when it strikes the medium at a certain angle.



Networking and telecommunication are two areas where fiber-optic cords are ideal signal conductors. Light travels great distances through optical lines without weakening, which makes the systems well-matched for both long-distance and short-distance communication.



Individual glass strands can also transmit independent light pulses on multiple wavelengths. This allows each strand to carry simultaneous streams of data on various channels.



The material's resistance to electrical interference also increases the clarity of propagated signals since nearby cables and environmental noises do not affect them. Usage of these wires in the cable-television industry quickly spread because of the new medium's superiority over traditional coaxial cord.



The glass-based system is less expensive and capable of transmitting clearer signals farther away from the source signal. It also substantially reduces signal losses and decreases the number of amplifiers required for each customer.



Fiber-optic cord allows cable providers to offer more customized service to separate neighborhoods because only one optical line is needed for every 500 or so households. Another popular use of fiber-optic cable is in imaging.



In a medical setting, an endoscope is a diagnostic instrument that enables users to see through small holes in the body. In other environments, where the device is also called a borescope or fiberscope, it makes it easier to observe areas that are difficult to reach or see under normal circumstances.



All versions of endoscopes look like a long thin tube, with a lens at one end. This tube is where light is emitted from the bundle of optical lines banded together inside the enclosure.



More and more industries are relying on fiber-optic cords because of the material's benefits. For instance, computer and internet technology has improved due to optical fibers' enhanced transmission of digital signals.


( Edit: admin )
Facebook Twitter Youtube
Copyright © 2011 www.opgwfitting.com All Rights Reserved.
Powered by SEO | Fiber Optic Cable